Network motif-based method for identifying coronary artery disease
نویسندگان
چکیده
The present study aimed to develop a more efficient method for identifying coronary artery disease (CAD) than the conventional method using individual differentially expressed genes (DEGs). GSE42148 gene microarray data were downloaded, preprocessed and screened for DEGs. Additionally, based on transcriptional regulation data obtained from ENCODE database and protein-protein interaction data from the HPRD, the common genes were downloaded and compared with genes annotated from gene microarrays to screen additional common genes in order to construct an integrated regulation network. FANMOD was then used to detect significant three-gene network motifs. Subsequently, GlobalAncova was used to screen differential three-gene network motifs between the CAD group and the normal control data from GSE42148. Genes involved in the differential network motifs were then subjected to functional annotation and pathway enrichment analysis. Finally, clustering analysis of the CAD and control samples was performed based on individual DEGs and the top 20 network motifs identified. In total, 9,008 significant three-node network motifs were detected from the integrated regulation network; these were categorized into 22 interaction modes, each containing a minimum of one transcription factor. Subsequently, 1,132 differential network motifs involving 697 genes were screened between the CAD and control group. The 697 genes were enriched in 154 gene ontology terms, including 119 biological processes, and 14 KEGG pathways. Identifying patients with CAD based on the top 20 network motifs provided increased accuracy compared with the conventional method based on individual DEGs. The results of the present study indicate that the network motif-based method is more efficient and accurate for identifying CAD patients than the conventional method based on individual DEGs.
منابع مشابه
Diagnosis of Coronary Artery Disease using Neuro-fuzzy-based Method
Background & Aim: Coronary artery disease is one of the most common diseases in different societies. Coronary angiography is established as one of the best methods for diagnosis of this disease. Angiography is an invasive and costly method. Furthermore, it is associated with risks such as death, heart attack, and stroke. Thus, this study introduces a neuro-fuzzy-based method which can help the ...
متن کاملDesigning and evaluation of a decision support system for prediction of coronary artery disease
Introduction: Since human health is the issue of Medical Research, correct prediction of results is of a high importance. This study applies probabilistic neural network (PNN) for predicting coronary artery disease (CAD), because the PNN is stronger than other methods. Methods: In this descriptive-analytic study, The PNN method was implemented on 150 patients admitted to the Mazandaran Heart...
متن کاملUsing Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملبررسی شیوع همزمانی عوارض میکروواسکولار و بیماری عروق کرونر در بیماران مبتلا به دیابت تیپ II
Abstract Abstract: Diabetic Mellitus (DM) is a systemic disease that affects all body organs. Micro and macro vascular complications progress with diabetes progression. It is important to find a solution for early diagnosis of coronary artery disease that is a major cause of death in these patients. The goal of this study is to assess the relation between diabetic nephropathy and retinopathy to...
متن کاملComparing the Results of Logistic Regression Model and Classification and Regression Tree Analysis in Determining Prognostic Factors for Coronary Artery Disease in Mashhad, Iran
Background and purpose: Understanding of the risk factors for cardiovascular artery disease, which is the leading cause of death worldwide, can lead to essential changes in its etiology, prevalence, and treatment. The aim of this study was to compare the results of logistic regression model and Classification and Regression Tree Analysis (CART) in determining the prognostic factors for coronary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016